OverLapping Run
Top Level Soccer in the USA and Beyond
Categories

MLS

MLS Crystal Ball Revisited – 2013 Edition

Back in March, for the fifth year, I wrote a post with the preseason predictions of some of the most widely read soccer pundits. In all, I collected the predictions of 18 posts.

Now before anyone gets their pants in a wad, I am aware that things change during the season. Players get injured, others get signed, etc. So just keep in mind that this post is about what was known back in March and the pundits(and I) took our best shots with what was laid out before us.
Note I am also aware that some writers will say their lists are ‘power rankings’, not predictions. Fine, a rose by any other name, but when you say team X is #1, it’s fair to say that all things being equal in the writer’s mind, that team should finish with the most points, doncha think?

Observations Back Then

Read the rest of this entry »

Soccer Potpourri

NOTICE

  • I know that some of these are not quite the ‘latest’, but I’m in the midst of a cross country move, but still reading and collecting soccer news that may be of interest to some of you. Thanks for checking in.

MLS

Interesting Reads

The Business of Soccer

Tournaments


MLS Top 20 Points per 90 in 2013

soccer-stats


These numbers are as of the 150 game mark, Sunday June 23.


Check top 20′s for any season on the MLS Player Statistics Page.

2013 Players with 700 minutes minimum – Top 20 Points Per 90
 Team  Player  Minutes  Goals  Assists  Points  Pts per 90  Status
 VAN  Sanvezzo  898   8   3   19   1.904   
 LA  Keane  703   5   4   14   1.792   DP
 MTL  Di Vaio  1133   10   0   20   1.589   DP
 CHI  Magee  1234   10   1   21   1.532   
 PHI  Casey  737   5   2   12   1.465   
 SEA  Neagle  710   4   3   11   1.394   
 PHI  McInerney  1339   10   0   20   1.344   GA
 NE  Fagundez  880   5   3   13   1.330   HG
 POR  Wallace  883   4   5   13   1.325   
 NE  Agudelo  780   5   1   11   1.269   
 POR  Johnson  1108   5   4   14   1.137   
 VAN  Teibert  831   2   6   10   1.083   HG
 SEA  Johnson  763   4   1   9   1.062   
 DAL  Perez  849   5   0   10   1.060   DP
 CLB  Oduro  1296   7   1   15   1.042   
 PHI  Le Toux  965   2   7   11   1.026   
 KC  Bieler  1339   7   1   15   1.008   DP
 SJ  Jahn  744   4   0   8   0.968   R
 MTL  Mapp  755   2   4   8   0.954   
 NY  Henry  1228   6   1   13   0.953   DP
2 points per goal, 1 per assist

MLS Carryover Minutes as a Predictor of Success

Meaningless statistic? You decide.


I got this idea from Tweed Thornton of Hot Time in Old Town. For a couple of years, Tweed ran a post at the end of the season showing the percentage of minutes played on each team by players that had been with the team the previous season. It’s an attempt to quantify whether the consistency of a roster could be correlated to team performance.


In the table below, the first two columns do exactly what Tweed did. So for the ‘End ’11′ column, the percentages reflect the number of minutes by 2010 carryover players. The twist I’ve added is to do the same at the beginning of the season. So the third column is a pretty close representation of the carryover minutes from 2012 players for each team. Note that the calculations are not perfect, but they should be pretty close.


In the first two columns, teams shaded in mauve, yeah I said it, mauve, did not qualify for the playoffs.


Some Observations


  • Chivas USA is the only team under 50% in all three columns.
  • Philadelphia is the only team under 50% to make the playoffs.
  • Real Salt Lake’s big turnover is apparent in the 3rd column.
  • San Jose pretty much stood pat, but they have lots of injuries to key players.
  • Remaking a team takes a couple of years, note Colorado under Oscar Pareja in 2012-13.
  • Most consistent? Los Angeles.
  • Carryover Minutes
      End ’11 End ’12 Begin ’13
     CHI  42.5%   69.6%   70.8% 
     CHV  49.4%   41.5%   47.0% 
     CLB  58.1%   60.3%   65.0% 
     COL  80.5%   58.7%   57.7% 
     DAL  66.8%   69.4%   59.4% 
     DC  29.0%   61.3%   75.5% 
     HOU  66.6%   84.1%   78.9% 
     KC  62.2%   83.1%   74.8% 
     LA  79.3%   74.3%   76.6% 
     MTL -    78.9% 
     NE  57.5%   51.2%   80.2% 
     NY  63.6%   46.7%   55.4% 
     PHL  49.7%   69.9%   74.7% 
     PTL    57.1%   65.4% 
     RSL  84.4%   88.6%   72.2% 
     SEA  78.4%   63.0%   73.1% 
     SJ  74.0%   81.2%   86.7% 
     TFC  35.3%   60.9%   56.6% 
     VAN    51.5%   76.4% 
    Missed Playoffs



    5th Annual Pundits’ MLS Prediction Post

    Some Starters

    This is the 5th year that I’ve posted the collated predictions by pundits of the soccersphere. The first two years I was posting for MLS Talk. I like to thank Chris over at MLS Talk for giving me the opportunity to join his fine group of blogs and allowing me to find a voice(of sorts) that I hope some readers have enjoyed. For MLS attendance geeks, check out the MLS Attendance page on OLR. Every regular season game in the history of MLS is in the database. It’s not perfect and if you have suggestions on how to improve it, please let me know. Thanks for reading and happy MLS’ing.

    Read the rest of this entry »

    Take Me Out to the Ballgame – 2013 Prequel

    With the 2013 MLS season just around the corner, here’s a look back at recent MLS attendance and a few other things. I’ll have my annual crystal ball post online later this week.

    5 year comparison
      Avg +/- GP
     2008   16,460     210 
     2009   16,037   -2.57%   225 
     2010   16,675   3.98%   240 
     2011   17,869   7.16%   306 
     2012   18,798   5.20%   323 
    2008 210 Game Season – 2009 225 Game Season
     2010 240 Game Season – 2011 306 Game Season
     2012 323 Game Season
    5 year comparison
      Average Median %<10K %>18k
     2008    16,460     15,188    10.95%   33.81% 
     2009    16,037     14,686    14.67%   31.11% 
     2010    16,675     15,332    7.50%   36.25% 
     2011    17,869     17,639    5.56%   48.69% 
     2012    18,798     18,393    1.86%   54.18% 
    MLS Attendance – Equal # of Home Games
      2011 2012  
      Att Cap Att Att +/- GP % of Cap Cap
     Seattle  38,495   ??   43,104   11.97%   17   96.66%   44,594 
     LA Galaxy  23,335   86.43%   23,136   -0.85%   17   85.69%   27,000 
     Montréal  NA  NA  22,772   NA  17   71.15%   32,005 
     Houston  17,694   80.28%   20,946   18.38%   17   95.04%   22,039 
     Portland  18,827   101.07%   20,438   8.56%   17   100.00%   20,438 
     Vancouver  20,408   97.18%   19,475   -4.57%   17   92.74%   21,000 
     Sporting KC  17,810   96.44%   19,404   8.95%   17   105.08%   18,467 
     Salt Lake  17,594   87.94%   19,087   8.49%   17   95.40%   20,008 
     Red Bulls  19,691   78.17%   18,281   -7.16%   17   72.58%   25,189 
     Toronto  20,267   92.21%   18,155   -10.42%   17   82.60%   21,978 
     Philadelphia  18,258   98.69%   18,053   -1.12%   17   97.58%   18,500 
     Chicago  14,273   78.92%   16,407   14.95%   17   82.03%   20,000 
     Colorado  14,838   74.19%   15,175   2.27%   17   83.90%   18,086 
     Columbus  12,185   59.57%   14,397   18.15%   17   70.38%   20,455 
     FC Dallas  12,861   54.92%   14,139   9.94%   17   66.72%   21,193 
     NE Revs  13,222   58.76%   14,001   5.90%   17   62.23%   22,500 
     D.C. United  15,196   77.35%   13,846   -8.88%   17   70.47%   19,647 
     San Jose  11,858   112.67%   13,293   12.10%   17   86.81%   15,313 
     ChivasUSA  14,830   68.41%   13,056   -11.96%   17   69.45%   18,800 

    Read the rest of this entry »

    Soccer Potpourri

    MLS

    The Business of Soccer

    Interesting Reads


    MLS Crystal Ball Revisited: 2012 Edition

    Back in March, for the fourth year, I wrote a post with the preseason predictions of some of the most widely read soccer pundits. In all, I collected the predictions of 18 posts.

    Now before anyone gets their pants in a wad, I am aware that things change during the season. Players get injured, others get signed, etc. So just keep in mind that this post is about what was known back in March and the pundits(and I) took our best shots with what was laid out before us.
    Note I am also aware that some writers will say their lists are ‘power rankings’, not predictions. Fine, a rose by any other name, but when you say team X is #1, it’s fair to say that all things being equal in the writer’s mind, that team should finish with the most points, doncha think?

    Read the rest of this entry »

    MLS Performance Bits

    As MLS resumes action after the international break, here are some random stats. As usual, if you find any errors please let me know in the comment section. Enjoy.


    The Player Performance bits are for those with at least 700 minutes played

  • Consistency: Nine of the players that are in the top 20 in Points per 90 finished 2011 in the Top 20.
  • Consistency: Mauro Rosales is on track to repeat(or finish 2nd) as the league leader in Assists per 90.

  • You can generate your own Top 20 in Points, Goals, or Assists per 90 minutes for any season in league history on the MLS Player Statistics page of this site.


    Team Bits – Scoring First and more

  • 285 of the 303 games played were not scoreless.
  • Columbus has been offside the most often. Colorado and Sporting KC the least often.
  • The team that scores first has won 184 games, drawn 51 times and lost 50 times.
  • The home team that scores first has won 125 games, drawn 24 times and lost 16 times.
  • The visiting team that scores first has won 59 games, drawn 27 times and lost 34 times.
  • No team has won more than lost after surrendering the first goal.
  • Only Toronto has lost more than won when leading at the half.
  • Eleven teams have not won when trailing at the half.
  • Vancouver has committed and suffered the most fouls.
  • The league’s Shots on Goal Percent is 34.6%, ranging from 29.2%(Sporting KC) to 39.4%(New England).
  • Houston has scored the highest percentage of its goals in the final 15 minutes(37.8%). They’ve surrendered the 2nd fewest in the same 15(13.2%)
  • Since the end of the shootout/extra time era(2002) winning home teams have averaged 2.3 goals while allowing .061. Winning visitors have scored 2.09, giving up .057.

  • MLS teams’ point differential from 2011 after 303 games
    Note: The 2011 season had 306 games

    Points Difference 2012 v 2011
      2012 2011 Pts
       Pts  PPG  Pts  PPG Diff
     San Jose  64   2.00   35   1.06   29 
     Kansas City  59   1.84   51   1.50   8 
     Chicago  56   1.75   43   1.26   13 
     Real Salt Lake  55   1.72   53   1.56   2 
     DC United  54   1.69   39   1.15   15 
     NY Red Bull  53   1.66   46   1.35   7 
     Seattle  52   1.68   60   1.82   -8 
     Los Angeles  50   1.56   67   2.03   -17 
     Houston  50   1.56   46   1.39   4 
     Columbus  49   1.53   47   1.38   2 
     Vancouver  42   1.31   28   0.82   14 
     Dallas  38   1.19   52   1.58   -14 
     Philadelphia  36   1.16   48   1.41   -12 
     Colorado  31   0.97   49   1.44   -18 
     Portland  30   0.94   42   1.24   -12 
     New England  29   0.91   28   0.82   1 
     Chivas USA  29   0.91   36   1.09   -7 
     Toronto FC  22   0.69   33   0.97   -11 


    How the CONCACAF Champions League has effected MLS teams

    CCL Impact on MLS Performance – ’12-13
    Group Begins After Group Play
       GP   PPG   GP   PPG   +/- 
     Los Angeles  23   1.43   32   1.56   8.90% 
     Real Salt Lake  23   1.83   32   1.72   -5.88% 
     Seattle  21   1.62   31   1.68   3.61% 
     Houston  22   1.68   32   1.56   -7.09% 
     Toronto FC  21   0.90   32   0.69   -24.01% 


    Wondo’s season is good enough for 10th all time in goals per 90 minutes, Alan Gordon is on track for 7th best all time.

    All Time Top 20 Goals/90(700 Minutes Minimum)
     Team  Player  Mins  G  A  Pts  Pts/90  Year
     CLB  Stern John  2170   26   5   57   1.078   1998 
     COL  Wolde Harris  1133   13   4   30   1.033   1998 
     TB  Mamadou Diallo  2405   26   4   56   0.973   2000 
     TOR  Danny Koevermans  756   8   1   17   0.952   2011 
     TB  Roy Lassiter  2580   27   4   58   0.942   1996 
     LA  Carlos Ruiz  2376   24   1   49   0.909   2002 
     SJ  Alan Gordon  1297   13   8   34   0.902   2012 
     DC  Raul Diaz Arce  2351   23   2   48   0.880   1996 
     NE  Taylor Twellman  2418   23   6   52   0.856   2002 
     SJ  Chris Wondolowski  2633   25   8   58   0.855   2012 
     LA  Landon Donovan  2136   20   9   49   0.843   2008 
     DC  Jaime Moreno  1725   16   8   40   0.835   1997 
     MIA  Alex Pineda Chacon  2055   19   9   47   0.832   2001 
     CHI  Hristo Stoitchkov  987   9   7   25   0.821   2000 
     LA  Eduardo Hurtado  2323   21   7   49   0.814   1996 
     NY  Juan Pablo Angel  2125   19   5   43   0.805   2007 
     LA  Cobi Jones  2136   19   13   51   0.801   1998 
     NE  Joe-Max Moore  1238   11   1   23   0.800   1996 
     KC  Miklos Molnar  1353   12   1   25   0.798   2000 
     DAL  Jeff Cunningham  1,918   17   8   42   0.798   2009 

    Soccer Potpourri

    MLS

    Interesting Reads

    Tournaments